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Abstract
In this paper, we try to analyze and clarify the intriguing interplay between
some counting problems related to specific thermalized weighted graphs and
random walks consistent with such graphs.

PACS numbers: 02.50.Ey, 02.50.−r, 05.30.Pr, 05.40.−a, 02.10.Yn

1. Introduction

The purpose of this work is to underline the subtle relationship between some counting
problems related to thermalized weighted graphs and random walks (RW) consistent with
such graphs; see, e.g., [1] for a detailed treatise on general RWs on graphs. Let us summarize
the topics developed in this paper. We start with defining finite thermalized weighted graphs.
We show that the notion of a graph singularity spectrum naturally arises in the problem
consisting in counting the number of paths whose transition-energy rate is asymptotically
of a given order. This spectrum is classically the Legendre transform of the graph pressure
function which is the logarithm of the spectral radius of its weight matrix. The corresponding
Perron eigenvectors play a key role in the Perron–Frobenius theory. We next recall the Gibbs-
variational principle, stating that the pressure produced by all RWs consistent with the graph
structure is bounded below by the graph pressure which may itself be viewed as the pressure of
some consistent canonical RW. This turns out to be a by-product of the Ruelle thermodynamic
formalism. We then exhibit and interpret some important consistent RWs in the light of quasi-
stationary distributions for substochastic RWs. The idea is to normalize the weight matrix of
the graph by its norm to make it substochastic so that, by adding an extra absorbing coffin state,
we may switch to the study of a proper RW conditioned to its absorption time. By doing so,
a probabilistic interpretation of both the spectral radius and Perron eigenvectors of the graph
weight matrix naturally comes out, and at least two conditionings are shown to be relevant:
one is to condition locally the above RW on not hitting the absorbing state in one step at each
iteration; the other is to condition it on not hitting the absorbing state in the remote future.
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The latter construction is shown to be the canonical RW with smallest pressure production
rate. At the end of the paper, we briefly discuss three particular cases, namely: the case where
the weighted graph is reduced to its adjacency matrix, the case of a potential weighted graph
and the case of a symmetric reversible weighted graph. Several general conclusions that make
use of the above constructions may be drawn. One is an expression in terms of the average
transition energy of the canonical RW associated with the adjacency matrix of the value at
which the singularity spectrum of any weighted graph attains its maximum; another is that
the entropy production rate of the locally conditioned RW is always bounded above by the
logarithm of the spectral radius of its adjacency matrix, in the potential case.

2. Finite graphs with Boltzmann weights

Let W � 0 be some non-negative N × N weight matrix of some finite graph (i.e. with
non-negative entries W(i, j) � 0). Let A = [A(i, j)], defined by the indicator function,

A(i, j) = I(W(i, j) > 0) ∈ {0, 1},
stand for the Boolean adjacency matrix associated with W . With A′ denoting the transpose
of A, we shall assume that A = A′ and that A is irreducible: in other words, the underlying
topological graph is undirected and strongly connected so that for each couple of states (i, j),
there is an integer m such that Am(i, j) > 0. With β ∈ R, we shall choose to represent W

under the form

W(i, j) =: Wβ(i, j) = A(i, j) e−βH(i,j), (1)

for some well-behaved transition energies −∞ < H(i, j) < +∞ from state i to j , not all
equal to the same value. The matrix, Wβ , therefore appears to be the weight matrix of some
thermalized weighted graph: it can be represented as the Hadamard product (say, *) of A with
some positive Boltzmann kernel matrix Kβ with entries Kβ(i, j) = e−βH(i,j):

Wβ = A ∗ Kβ. (2)

We note that the Hadamard λ-power (λ > 0) of Wβ simply is W ∗λ
β = Wλβ = A ∗ Kλβ ,

corresponding to a rescaling of β.

Remark. Let x1 < x2 < · · · < xN be N points on the line (circle). For some matrix H, we
may define

H(i, j) = H(xi, xj )

to be the interaction energy between sites (i, j) in positions (xi, xj ) leading to a slightly more
general spatially extended model that can be treated along similar lines.

2.1. Some counting problems arising in this context

The quantity,

Wβ(in) :=
n∏

m=1

Wβ(im−1, im),

is the weight of the n-path in := {i0, i1, . . . , in} which is non-null if and only if: A(in) :=∏n
m=1 A(im−1, im) �= 0. The total product weight of n-step paths connecting states (i0, in)
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therefore is given by the corresponding element of the transfer matrix:

Wn
β (i0, in) =

∑
i1,...,in−1

n∏
m=1

Wβ(im−1, im)

=
∑

i1,...,in−1

n∏
m=1

A(im−1, im) e−β
∑n

m=1 H(im−1,im) =
Nn(i0,in)∑

p=1

e−βHn(p),

where Hn(p) is the cumulative energy of the pth path connecting (i0, in) and Nn(i0, in) :=
An(i0, in) is the number of such n-paths. Summing over the endpoints of the n-paths, we
obtain the full partition function of energy:

Zn(β) :=
∑
i0,in

Wn
β (i0, in) =

∑
i0,...,in

n∏
m=1

Wβ(im−1, im) =
Nn∑

p=1

e−βHn(p), (3)

where Nn := ∑
i0,in

Nn(i0, in) = Zn(0) is the total number of n-paths. Define

Nn,ε(α) := #

{
p ∈ [Nn] :

1

n
Hn(p) ∈ (α − ε, α + ε)

}
,

the number of n-paths whose transition-energy rate is asymptotically of order α. We expect

lim
ε↓0

lim
n↑∞

1

n
log Nn,ε(α) = f (α) � 0, (4)

where f (α) = infβ(αβ − p(β)), α ∈ [α−, α+], is the concave Legendre transform of some
concave pressure function p(β). We may call f (α) the singularity spectrum of the weighted
graph.

Observing from (3) that Zn(β) = ∥∥Wn
β

∥∥ is a matrix norm and recalling under our

irreducibility assumption
∥∥Wn

β

∥∥1/n → n↑∞ρβ , the spectral radius of Wβ , we get

− 1

n
log Zn(β) →

n↑∞
p(β) = − log ρβ. (5)

For each β, the number ρβ, as an eigenvalue of Wβ , satisfies det
(

1
ρβ

Wβ − I
) = 0.

For each n, the quantity,

�n(β) := Zn(β)

Zn(0)
= 1

Nn

Nn∑
p=1

e−βHn(p),

is the Laplace–Stieltjes transform of some discrete probability measure on n-paths satisfying
− 1

n
log �n(β) → p(β) − p(0) = − log ρβ

ρ0
. This limit therefore is the log-Laplace transform

of some probability distribution which, in particular, is smooth and concave. The pressure
p(β) is classically related to the scaled free energy τ(β) by p(β) =: βτ(β). Note that, for
each n, we also have

�n(β) = 1

Nn

∑
hn∈Hn

Nn(hn) e−βhn ,

where Hn := Span(Hn(p);p ∈ [Nn]), Nn(hn) := #{p ∈ [Nn] : Hn(p) = hn} and Nn(hn)/Nn

is the probability of n-paths of energy hn.

With 1 = (1, 1, . . . , 1)′, we define wβ := Wβ1 to be the column-sum vector of Wβ , with
entries wβ(i) = ∑

j A(i, j) e−βH(i,j). Define w+
β = maxi wβ(i), w−

β = mini wβ(i). We have
w−

β � ρβ � w+
β and so

−log w+
β � p(β) � − log w−

β .
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Clearly, it holds that
− log w+

β ∼
β↑∞

βα− where α− = mini,j :A(i,j)=1 H(i, j) and similarly,

− log w−
β ∼

β↓−∞
βα+ where α+ = maxi,j :A(i,j)=1 H(i, j) > α−.

We can check that f (α−) = f (α+) = 0 and that the maximum of f (α) is attained
at α = α0 = p′(0). We also have f (α) = f (p′(β)) = p′(β)β − p(β) so that
f (α0) = −p(0) = log ρ0 > 0, where ρ0 is the spectral radius of A.

Whenever α− < 0, α+ > 0, then there is a βc, possibly not equal to 0, given by p′(βc) = 0.

With αc := p′(βc) = 0, f (αc) = −p(βc) > 0.

For all distinct pairs of nodes (i, j), let m(i, j) = inf(m > 1 : Am(i, j) > 0). Then

m∗ = max
(i,j)

m(i, j)

is the diameter of the adjacency graph. For each (i, j), there can be more than one path of
minimal length m(i, j). Let Nm(i,j) � 1 be the number of such length−m(i, j) paths and let
h(i, j) be the energy of any path with smallest energy among these Nm(i,j) paths. Then

α∗ = max
(i,j)

[h(i, j)/m(i, j)]

is a quantity of interest related to the energy diameter of the weighted graph. Clearly,
α− < α∗ < α+ and α∗ belongs to the range of the spectrum.

2.2. Perron–Frobenius and the like

Let π′
β > 0 and ϕβ > 0 be the line and column (l1− norm 1) Perron vectors of Wβ associated

with the spectral radius ρβ of Wβ :

ρβπ′
β = π′

βWβ and ρβϕβ = Wβϕβ. (6)

Under our hypothesis, ρβ > 0 is the algebraically simple real dominant eigenvalue of Wβ . If
A is, in addition, primitive (Am > 0 for some integer m), then all the other eigenvalues of Wβ

are strictly contained within the disc: |ρ| < ρβ , else some could lie on the disc, |ρ| = ρβ ,
because of the underlying periodicity of the problem.

We shall let φβ := ϕβ/(π′
βϕβ) in such a way that the Hadamard product of πβ and φβ ,

namely the column vector πβ ∗ φβ , with components πβ ∗ φβ(i) = πβ(i)φβ(i), has l1-norm
1 (i.e. π′

βφβ = 1).

Remarks.

(i) When H(i, j) = H(j, i),Wβ is itself symmetric (Wβ = W ′
β) then πβ = ϕβ and

πβ ∗ φβ = ϕβ ∗ ϕβ/(ϕ′
βϕβ). Then it is useful to introduce the probability wave vector

of l2-norm 1 : ψβ = ϕβ/(ϕ′
βϕβ)1/2 in such a way that πβ ∗ φβ = ψβ ∗ ψβ .

(ii) Letting εβ := 1 − ρβ/w+
β � 0 stand for the scaled spectral gap of the graph, the equation

giving the right eigenvector ϕβ may be recast as

εβϕβ =
(

I − 1

w+
β

Wβ

)
ϕβ =: −βϕβ,

where β = 1
w+

β
Wβ − I is a Laplacian of the graph. Observe that w+

β = ‖|Wβ |‖∞ is the

matrix norm induced by the l∞-vector norm so that ρβ/w+
β � 1 (i.e. εβ � 0) and that

log ρβ/ log w+
β → β↑∞1.
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Consistently with (6), we shall let π′
0 > 0 and ϕ0 > 0 stand for the line and column

Perron vectors of A = W0 with

ρ0π
′
0 = π′

0Aandρ0ϕ0 = Aϕ0,

associated with the spectral radius ρ0 of A = W0. We shall let φ0:= ϕ0/(π
′
0ϕ0) so that

the Hadamard product π0 ∗ φ0 has l1− norm 1. Note that, since A = A′, π0 = ϕ0 and
π0 ∗ φ0 = ϕ0 ∗ ϕ0/(ϕ

′
0ϕ0) =: ψ0 ∗ ψ0 where ψ0 = ϕ0/(ϕ

′
0ϕ0)

1/2 is the wave vector
associated with A.

3. Random walks on graphs

In the study of weighted graphs, questions pertaining to counting are then relevant. Once such
weighted graphs have been introduced, it is useful to consider the following particular class
of random walks attached to such graphs.

Let 0 � � = [�(i, j)] denote some stochastic matrix with column sums one, �1 = 1.

Let PWβ
be the set of stochastic matrices which are Wβ-consistent in the sense that

� ∈ PWβ
↔ {�(i, j) = 0 whenever Wβ(i, j) = 0}. (7)

Let μ′ > 0 be the line left Perron eigenvector of �, satisfying: μ′ = μ′� (the unique invariant
probability measure associated with �). Clearly, to each such � a positive recurrent random
walk can be associated.

3.1. A variational principle and first consequences

In this context, the following Gibbs-variational principle indeed holds [2], resulting from the
Ruelle thermodynamic formalism [10]. It reads

log ρβ = sup
�∈PWβ

⎛
⎝−

∑
i

μ(i)
∑

j

�(i, j) log �(i, j) +
∑

i

μ(i)
∑

j

�(i, j) log Wβ(i, j)

⎞
⎠

= sup
�∈PWβ

⎛
⎝−

∑
i

μ(i)
∑

j

�(i, j) log �(i, j) − β
∑

i

μ(i)
∑

j

�(i, j)H(i, j)

⎞
⎠ , (8)

where the supremum is attained for the unique stochastic matrix �∗ which is Wβ-consistent
and defined by the Doob transform:

�∗(i, j) = 1

ρβ

Wβ(i, j)
φβ(j)

φβ(i)
. (9)

With Dφβ
:= diag(φβ), this is also �∗ = 1

ρβ
D−1

φβ
WβDφβ

, in the matrix form. The

corresponding invariant measure satisfying μ′
∗ = μ′

∗�∗ can easily be checked to be

μ∗ = πβ ∗ φβ, (10)

the Hadamard product of the left and right eigenvectors of the weight matrix Wβ . We shall
call the RW with transition probability �∗ the canonical RW consistent with Wβ . Using this
canonical RW construction, we get

log ρβ = − 1

ρβ

∑
i

πβ(i)φβ(i)
∑

j

Wβ(i, j)
φβ(j)

φβ(i)
log

(
1

ρβ

φβ(j)

φβ(i)

)

5
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= − 1

ρβ

∑
i

πβ(i)
∑

j

Wβ(i, j)φβ(j)[− log ρβ + log φβ(j) − log φβ(i)]

= log ρβ +
∑

i

πβ(i)φβ(i) log φβ(i) − 1

ρβ

∑
i

πβ(i)
∑

j

Wβ(i, j)φβ(j) log φβ(j),

leading to the expression

ρβ =
∑

i πβ(i)
∑

j Wβ(i, j)φβ(j) log φβ(j)∑
i πβ(i)φβ(i) log φβ(i)

,

in terms of the left and right Perron eigenvectors of Wβ. As a result, we obtain

p(β) =: βτ(β) = − log

[∑
i πβ(i)

∑
j A(i, j) e−βH(i,j)φβ(j) log φβ(j)∑
i πβ(i)φβ(i) log φβ(i)

]
. (11)

From (8), for all Wβ-consistent stochastic matrix � �= �∗ :

log ρβ > −
∑

i

μ(i)
∑

j

�(i, j) log �(i, j) − β
∑

i

μ(i)
∑

j

�(i, j)H(i, j). (12)

In the right-hand side of (12), s := −∑
i μ(i)

∑
j �(i, j) log �(i, j) =:

∑
i μ(i)s(i) is the

equilibrium Shannon entropy production rate of the ergodic Markov chain governed by � and
u := ∑

i μ(i)
∑

j �(i, j)H(i, j) =:
∑

i μ(i)u(i) its equilibrium internal transition energy.
It follows from (8) that the quantity, p(β) := − log ρβ, is a universal lower bound for the
equilibrium pressure production rate of all Wβ-consistent walkers. Stated differently, defining
the pressure of a consistent RW governed by � ∈ PWβ

,� �= �∗, as

p�(β) := β
∑

i

μ(i)
∑

j

�(i, j)H(i, j) +
∑

i

μ(i)
∑

j

�(i, j) log �(i, j),

it holds that

for all � �= �∗ ∈ PWβ
, p�(β) > p(β) = p�∗(β). (13)

Remark. On the other hand, we also recall the Friedland–Karlin inequality [4] of a similar
flavor:

p(β) = − log ρβ �
∑

i

πβ(i)φβ(i) log wβ(i), (14)

where, wβ := Wβ1 is the column-sum vector of Wβ : wβ(i) = ∑
j A(i, j) e−βH(i,j). It gives a

universal lower bound of p(β) in terms of the invariant measure μ∗(i) = πβ(i)φβ(i) associated
with �∗.

3.2. The entropy production rate of the RW governed by � ∈ PWβ

We need to say a few words on the way to compute the quantity s associated with some �.
We refer to [8] for additional information. For each pair of connecting states (i0, in), define

�n
λ(i0, in) :=

∑
i1,...,in−1

n∏
m=1

�(im−1, im)λ,

where �(im−1, im)λ is the (im−1, im) entry of �∗λ, the Hadamard λ-power of �,λ > 0. Define
the Rényi λ-entropy of all n-paths of the RW governed by � and started using the invariant
measure μ to be

Rn(λ) := 1

1 − λ
log

∑
i0,in

μ(i0)�
n
λ(i0, in).

6
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Note that with �(in) := ∏n
m=1 �(im−1, im) the probability of the n-path, in := {i0, i1, . . . , in},

Rn(λ) → λ↑1Sn = −
∑

in

μ(i0)�(in) log �(in),

the Shannon entropy of n-paths at equilibrium. Then, with α(λ) := ∑
i μ(i)

∑
j �(i, j)λ,

1

n
Rn(λ) →

n↑∞
r(λ) := 1

1 − λ
log α(λ), (15)

where r(λ) is the Rényi-entropy production rate of the walker. As a result,

r(λ) → λ↑1s = −
∑

i

μ(i)
∑

j

�(i, j) log �(i, j) = −α′(1).

This approach is useful to compute the Shannon-entropy production rate s for specific �s.

3.3. Random walks consistent with Wβ

We now exhibit and interpret some important Wβ-consistent RWs in the light of quasi-
stationary distributions for substochastic RWs. By doing so, a probabilistic interpretation of
ρβ, πβ and φβ emerges.

Let us first normalize Wβ in the following way. Consider the matrix

Wβ := Wβ

‖Wβ‖ , (16)

for some matrix-norm ‖Wβ‖ of Wβ. For example, ‖Wβ‖ = N maxi,j Wβ(i, j) or ‖Wβ‖ =∑
i,j Wβ(i, j) or ‖Wβ‖ = w+

β = maxi wβ(i).

The spectral radius of Wβ now is ρβ = ρβ/‖Wβ‖ < 1 with the same left and right
strictly positive Perron eigenvectors πβ > 0 and ϕβ > 0 as for Wβ in (6). By doing so, the
matrix Wβ is substochastic in the sense that, with wβ := Wβ1 being the column-sum vector
of Wβ , then wβ(i) ∈ (0, 1] with wβ(i) < 1 for at least one i. To recast this problem into
a stochastic problem, we may add an additional coffin state, say ∂ := {0} and look at the
enlarged (N + 1) × (N + 1) stochastic matrix P :

P =
[

1 0′

1−wβ Wβ

]
. (17)

P now is the stochastic transition matrix of a RW, say {Xn}, having state {0} as an additional
absorbing state. Let τ0 be the first hitting time of ∂ = {0} for this RW {Xn}.

Using this construction, clearly, the substochastic matrix Wβ turns out to be the transition
matrix of the process Xn · I(τ0 > n) (i.e. Xn, restricted to the set τ0 > n). In other words,
with e′

i0
the line vector with a single 1 in position i0, 0 elsewhere, we have

Pi0(Xn = in, τ0 > n) = W
n

β(i0, in) = e′
i0
W

n

β ein , i0, in ∈ {1, . . . , N}.
Therefore,

Pi0(τ0 > n) = e′
i0
W

n

β1. (18)

We note that Pi0(τ0 = 1) = Pi0(τ0 > 0) − Pi0(τ0 > 1) = e′
i0
(I − Wβ)1 = 1 − wβ(i0), the

probability mass defect of Wβ at state i0.

For all (i0, in), we have limn↑∞
[
W

n

β(i0, in)
]1/n = ρβ and, only when A is primitive

(irreducible and aperiodic), by the strong version of the Perron–Frobenius theorem (see [6]):

lim
n↑∞

ρ −n
β W

n

β = φβπ′
β, (19)

7
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where π′
β > 0 and φβ > 0, defined in (6), are the left (right) eigenvectors of Wβ associated

with ρβ , chosen, as before, so as to satisfy π′
βφβ = 1. As a result of (18) and (19), when A is

primitive,

lim
n↑∞

ρ −n
β Pi0(τ0 > n) = φβ(i0), (20)

meaning that τ0 is tail equivalent to a geometric random variable with success probability ρβ .
The latter formula, therefore, gives the limiting interpretation of φβ in the context of the RW
{Xn}. What about πβ?

First, because π′
β is the left eigenprobability vector of Wβ with the eigenvalue ρβ

Pπβ
(τ0 > n) :=

N∑
i0=1

πβ(i0)Pi0(τ0 > n) = π′
βW

n

β1 = ρn
β. (21)

If the process is started with πβ , the law of τ0 is exactly geometrically distributed on
{1, 2, . . . , N} with success probability ρβ.

Consider now the conditional probability Pi0(Xn = in | τ0 > n).
Recalling Pi0(Xn = in, τ0 > n) = e′

i0
W

n

βein , by the Bayes rule, we get

Pi0(Xn = in | τ0 > n) = e′
i0
W

n

β ein

e′
i0
W

n

β1
= e′

i0

(
ρ −n

β W
n

β

)
ein

e′
i0

(
ρ −n

β W
n

β

)
1

,

showing that, independently of the starting point i0,

Pi0(Xn = in | τ0 > n) →
n↑∞

e′
i0
(φβπ′

β) ein

e′
i0
(φβπ′

β)1
= πβ(in).

Such a probability measure πβ is called a Yaglom limit [11] of {Xn}.
Further, with Pπβ

(·) := ∑N
i=1 πβ(i0)Pi0(·), for each n, in ∈ {1, 2, . . . , N}:

Pπβ
(Xn = in | τ0 > n) := Pπβ

(Xn = in, τ0 > n)

Pπβ
(τ0 > n)

= π ′
βW

n

β ein

π ′
βW

n

β1
= πβ(in), (22)

and this precisely means that πβ is the (unique) quasi-stationary distribution (QSD) of {Xn}.
As is well known for Markov chains with finite state space absorbed at ∂ , we observe that the
Yaglom limit coincides with its QSD. When A is primitive (strongly connected and aperiodic),
equations (21), (22) and (20) provide a natural interpretation of ρβ, πβ and φβ in terms of
the RW governed by P in (17) and its stopping time τ0.

We refer to [7] for additional informations on QSD and Yaglom limits in the context of
population dynamics.

Remark. When A is irreducible but not primitive (the underlying topological graph is strongly
connected but periodic), only the following weaker form of the Perron–Frobenius theorem
holds true [6]:

lim
K↑∞

1

K

K∑
n=1

ρ −n
β W

n

β = φβπ′
β.

With φ+
β = maxi φβ(i), φ−

β = mini φβ(i), equation (20) has to be weakened into

φ−
β

/
φ+

β � ρ −n
β Pi0(τ0 > n) � φ+

β/φ−
β , for all n, i0.

The quantity, ρ −n
β Pi0(τ0 > n), may oscillate and not tend to some limit; however,

− 1
n

log Pi0(τ0 > n) → ρβ still holds true.

8
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The above construction of the RW {Xn} allows us now to interpret two fundamental
Wβ-consistent RWs.

The locally conditioned random walk. With Dwβ
:= diag(wβ), the transition matrix of the

one-step conditioned process, (X1 | τ0 > 1), is

�(i, j) = e′
iWβ ej

e′
iWβ1

= e′
i

[
D −1

wβ
Wβ

]
ej = e′

iWβ ej

e′
iWβ1

= e′
i

[
D−1

wβ
Wβ

]
ej ,

normalizing each line i by e′
iWβ1 = wβ(i). Clearly, �1 = 1 and the RW with transition

matrix,

� = D−1
wβ

Wβ, (23)

is Wβ-consistent. Note that � is invariant under the scaling Wβ → Wβ.

Let μ be the invariant associated with this �. It holds, [9], that

μ(i) = (I − �)i,i∑
i (I − �)i,i

,

where (I−�)i,i is the cofactor of the (i, i)-entry of the matrix I−�. Then, if
←−
� is the transition

matrix of the reversed (backward in time) chain of � at equilibrium,
←−
�

′ = Dμ�D−1
μ . In

general,
←−
� �= � and detailed balance may not hold.

Global conditioning and the canonical process. Consider now the proper Markov chain whose
transition probabilities are obtained by the Doob transform,

�∗(i, j) = ρ −1
β

φβ(j)

φβ(i)
Wβ(i, j) = ρ−1

β

φβ(j)

φβ(i)
Wβ(i, j), i, j ∈ {1, . . . , N},

satisfying �∗1 = 1. In the matrix form,

�∗ = ρ−1
β D−1

φβ
WβDφβ

, (24)

and �∗ is also invariant under the scaling Wβ → Wβ. An important property of this RW is
the following: the probability, �∗(in) := ∏n

m=1 �∗(im−1, im), of the n-path in is

�∗(in) = ρ−n
β Wβ(in)

n∏
m=1

φβ(im)

φβ(im−1)
= ρ−n

β Wβ(in)
φβ(in)

φβ(i0)
.

For a bridge n-path for which i0 = in,�∗(in) = ρ−n
β Wβ(in) reduces, up to a scaling constant,

to the weight Wβ(in) of the n-path in.
The invariant probability distribution μ∗ on {1, . . . , N} satisfying μ′

∗�∗ = μ′
∗ exists. It

is given explicitly by μ∗ = πβ ∗ φβ and so

μ∗(i) = πβ(i)φβ(i), i = 1, . . . , N. (25)

Doob transforms have to do with conditioning a process on its lifetime. The Markov chain
with one-step transition probability matrix �∗ may be shown to be that of the process whose
one-step transition probability distribution is

�∗(i, j) = lim
n↑∞

Pi (X1 = j | τ0 > n), (26)

corresponding to Xn conditioned to never hit the coffin state ∂ = {0} in the distant future; see
[7]. This process has a unique invariant measure given by μ∗ in (25).

9
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Defining as before
←−
� ∗ by

←−
�

′
∗ = Dμ∗�∗D−1

μ∗ , we can ask conditions under which detailed

balance
←−
� ∗ = �∗ holds. We have

←−
�

′
∗ = ρ−1

β Dπβ
Dφβ

D−1
φβ

WβDφβ
D−1

φβ
D−1

πβ
= ρ−1

β Dπβ
WβD−1

πβ

so that
←−
� ∗ = ρ−1

β D−1
πβ

W ′
βDπβ

showing that reversibility holds when Wβ = W ′
β since if this is

the case: πβ = φβ.

No extra state. We emphasize here that there are some alternative ways to force the
substochastic problem into a stochastic one. Assume A(i, i) > 0 for each i, in which case
AN−1 > 0 and A necessarily is primitive (see lemma 8.5.5 of [6]). Consider the stochastic
matrix � which is Wβ-consistent:

� = Wβ + D1−wβ
, (27)

where D1−wβ
:= diag(1 − wβ), satisfying �1 = 1. In that case, the mass defect vector 1−wβ

is transferred to the diagonal entries of Wβ to make it stochastic, without appealing to an extra
coffin state. Note that � in (27) no longer is invariant under the scaling Wβ → Wβ and so
this normalization is norm dependent.

4. Special cases

4.1. The topological case

Assume β = 0. In this case, W0 = A and

log ρ0 > s = −
∑

i

μ(i)
∑

j

�(i, j) log �(i, j)

for all A-consistent matrix � �= �0
∗ with �0

∗(i, j) = 1
ρ0

A(i, j)
φ0(j)

φ0(i)
. log ρ0 > 0 interprets

as the maximal entropy production rate of all Markov chains governed by such �s. The
RW with transition matrix �0

∗ is termed the maximal entropy RW in [3]. Its invariant
measure is μ∗(i) = ψ0(i)

2. When � = D−1
a A, with a = A1, the invariant measure is

μ(i) = a(i)
/ ∑

i a(i), proportional to the node degrees. Then s = ∑
i a(i) log a(i)

/ ∑
i a(i)

and log ρ0 > s is an inequality first discussed in [3]. When disorder is present, the canonical
RW associated with W0 = A was also shown therein to exhibit localization properties.

Consider the general inequality (12) for all Wβ-consistent stochastic matrix � �= �∗ =:
1
ρβ

Wβ(i, j)
φβ(j)

φβ(i)
. Choosing for � the above particular value, � = �0

∗, we obtain

log ρβ > log ρ0 − β
∑

i

ψ0(i)
2
∑

j

�0
∗(i, j)H(i, j).

Therefore, the average transition energy,

α0 :=
∑

i

ψ0(i)
2
∑

j

�0
∗(i, j)H(i, j), (28)

interprets as the slope at β = 0 of the graph pressure function β → p(β), namely, α0 = p′(0).

We have f (α0) = −p(0) = log ρ0.

10
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4.2. The potential case

Assume H(i, j) = U(j) − U(i) for some potential U attached to the nodes of the graph. In
this case, the matrix Kβ defining Wβ is called a potential kernel. First, in this case, it follows
from (28) and the equilibrium property of (μ∗ = ψ0 ∗ ψ0,�

0
∗) that

α0 :=
∑

i

ψ0(i)
2
∑

j

�0
∗(i, j)[U(j) − U(i)] = 0. (29)

We conclude that the singularity spectrum of all graph with potential kernel Kβ attains its
maximum at α0 = 0.

With vβ being the column vector with entries vβ(i) = exp −βU(i), we get

Wβ := A ∗ Kβ = D−1
vβ

ADvβ
. (30)

We have wβ = Wβ1 = D−1
vβ

Avβ and Dwβ
= D−1

vβ
DAvβ

. Note that Wβ is diagonally similar to
A so that the spectral radius of Wβ is ρ0, independently of β.

–Consider first the RW with transition matrix � = D−1
wβ

Wβ = D−1
Avβ

ADvβ
. Its invariant

measure is characterized by μ′ = μ′�. Recalling A = A′, we find μ ∝ Dvβ
Avβ, with

normalized entries weighting output degree nodes with lowest U:

μ(i) =
∑

j

A(i, j) e−β(Ui+Uj )

/ ∑
i,j

A(i, j) e−β(Ui+Uj ). (31)

This RW with transition matrix � is reversible because
←−
� = D−1

μ �′Dμ = �.

–Second, consider the canonical RW consistent with Wβ = D−1
vβ

ADvβ
. The right eigenvector

φβ of Wβ = D−1
vβ

ADvβ
is φβ = D−1

vβ
φ0. It is associated with the eigenvalue ρ0. Thus the

canonical RW has the transition matrix �∗ is given by

�∗ = ρ−1
0 D−1

φβ
WβDφβ

= ρ−1
0 D−1

φ0
ADφ0

= �0
∗. (32)

Its invariant measure is π∗ = ψ0 ∗ ψ0. The canonical RW consistent with the potential
weight matrix, Wβ = D−1

vβ
ADvβ

, always coincides with the canonical RW consistent with its

adjacency matrix A governed by �0
∗.

With � = D−1
wβ

Wβ with entries

�(i, j) = A(i, j) e−β(U(j)−U(i))

/∑
j

A(i, j) e−β(U(j)−U(i)),

and with invariant measure μ(i) displayed in (31), for all β, we get

log ρ0 > −
∑

i

μ(i)
∑

j

�(i, j) log �(i, j) − β
∑

i

μ(i)
∑

j

�(i, j)(U(j) − U(i))

= −
∑

i

μ(i)
∑

j

�(i, j) log �(i, j) = s.

We conclude that for potential kernels Kβ , the entropy production rate of the RW with
probability transition matrix � = D−1

wβ
Wβ = D−1

wβ
[A ∗ Kβ] is always bounded above by

log ρ0.

Remark. The Wβ-consistent RW with transition matrix � = D−1
wβ

Wβ associated with the
weight kernel Wβ = ADvβ

was also considered in [5]. For this model, the cost of a transition
from i to j only depends on the terminal state, regardless of where one starts from. Although
the latter is not in the potential class, its invariant measure is also given by (31).
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4.3. The symmetric case

If H(i, j) = H(j, i), then Wβ = W ′
β itself. For example, H(i, j) = |U(j) − U(i)| for some

potential U attached to the nodes of the graph, or H(i, j) is some distance (ultrametric or not)
between nodes i and j . In this case, for all β, the invariant measure μ∗ of the canonical RW
governed by �∗ = 1

ρβ
D−1

φβ
WβDφβ

, is

μ∗ = ψβ ∗ ψβ, (33)

and the corresponding RW is reversible.
When Wβ = W ′

β , the invariant measure associated with � = D−1
wβ

Wβ satisfying μ′ = μ′�
is given by

μ(i) = wβ(i)∑
i wβ(i)

=
∑

j A(i, j) e−βH(i,j)∑
i,j A(i, j) e−βH(i,j)

.

We have
←−
�

′ = Dμ�D−1
μ = Dwβ

D−1
wβ

WβD−1
wβ

= WβD−1
wβ

= �′ so that
←−
� = �: detailed

balance also holds.
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